8 research outputs found

    WeatherLAN - A Local Area Network for Monitoring and Control

    Get PDF
    Monitoring of nature behaviours is a crucial part in many applications. The need for monitoring is in fact unavoidable in systems where independent operation of a system is needed. On locations where no cabled infrastructure is available it is necessary to use wireless link to interconnect the location with the Internet. GPRS is a cheap solution for transferring data over such areas where cables are not available by using operator public cellular network. In this thesis a wireless sensor network is integrated with a GPRS module to support multiple measurement points and GPRS link as backbone connection to remote location. Security issues related to embedded systems and the use of public networks is investigated and one possible solution presented. Vaisala WXT520 weather transmitter is added to the system to measure the weather at the network location which would be needed to remotely support the distributed energy production by wind turbine generator, solar panels and backup diesel generator. The system prevent to be one solution that would enable remote control of the local energy production.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    High-performance implementation of H(div)-conforming elements for incompressible flows

    No full text
    In this thesis, evaluation of H(div)-conforming finite elements is implemented in a high-performance setting and used to solve the incompressible Navier-Stokes equation, obtaining an exactly point-wise divergence-free velocity field. In particular, the anisotropic Raviart-Thomas tensor-product polynomial space is considered, where the finite element operators are evaluated with quadrature in a matrix-free fashion using sum-factorization on tensor-product meshes. The implementation includes evaluation over elements and faces in two- and three-dimensional space, supporting non-conforming meshes with hanging nodes, and using the contravariant Piola transformation to preserve normal components on element boundaries. In terms of throughput, the implementation achieves up to an order of magnitude faster evaluation of finite element operators compared to a matrix-based evaluation. Correctness is demonstrated with optimal convergence rates for various polynomial degrees, as well as exactly divergence-free solutions for the velocity field

    High-performance implementation of H(div)-conforming elements for incompressible flows

    No full text
    In this thesis, evaluation of H(div)-conforming finite elements is implemented in a high-performance setting and used to solve the incompressible Navier-Stokes equation, obtaining an exactly point-wise divergence-free velocity field. In particular, the anisotropic Raviart-Thomas tensor-product polynomial space is considered, where the finite element operators are evaluated with quadrature in a matrix-free fashion using sum-factorization on tensor-product meshes. The implementation includes evaluation over elements and faces in two- and three-dimensional space, supporting non-conforming meshes with hanging nodes, and using the contravariant Piola transformation to preserve normal components on element boundaries. In terms of throughput, the implementation achieves up to an order of magnitude faster evaluation of finite element operators compared to a matrix-based evaluation. Correctness is demonstrated with optimal convergence rates for various polynomial degrees, as well as exactly divergence-free solutions for the velocity field

    Numerical simulations of the Dynamic Beam Equation in discontinuous media

    No full text
    The study examines the Projection method and the simultaneousapproximation-term (SAT) method as boundary treatment for the dynamic beam equation using summation-by-parts (SBP) operators for handling the inner domain. The methods are examined for both the homogeneous constant coefficient case, and the inhomogeneous piecewise constant coefficient case with a coupled interface. The outer boundaries are handled by SAT or Projection, the coupled interfaced is handled by Projection or a mix between Projection and SAT. Solutions are integrated in time with finite central difference schemes and compared to analytical solutions. A convergence study is conducted with respect to the spatial discretization to measure the accuracy, and the stability is examined by numerical simulations of the CFL-condition. The study shows that Projection has the same accuracy as SAT for most boundary conditions while allowing for a larger timestep. A discontinuity in the medium is found to be handled equally accurate by Projection and the Projection and SAT mixture for all but one case studied, where the mixture was slightly more accurate

    Numerical simulations of the Dynamic Beam Equation in discontinuous media

    No full text
    The study examines the Projection method and the simultaneousapproximation-term (SAT) method as boundary treatment for the dynamic beam equation using summation-by-parts (SBP) operators for handling the inner domain. The methods are examined for both the homogeneous constant coefficient case, and the inhomogeneous piecewise constant coefficient case with a coupled interface. The outer boundaries are handled by SAT or Projection, the coupled interfaced is handled by Projection or a mix between Projection and SAT. Solutions are integrated in time with finite central difference schemes and compared to analytical solutions. A convergence study is conducted with respect to the spatial discretization to measure the accuracy, and the stability is examined by numerical simulations of the CFL-condition. The study shows that Projection has the same accuracy as SAT for most boundary conditions while allowing for a larger timestep. A discontinuity in the medium is found to be handled equally accurate by Projection and the Projection and SAT mixture for all but one case studied, where the mixture was slightly more accurate

    Boundary and interface methods for energy stable finite difference discretizations of the dynamic beam equation

    No full text
    We consider energy stable summation by parts finite difference methods (SBP-FD) for the homogeneous and piecewise homogeneous dynamic beam equation (DBE). Previously the constant coefficient problem has been solved with SBP-FD together with penalty terms (SBP-SAT) to impose boundary conditions. In this work, we revisit this problem and compare SBP-SAT to the projection method (SBP-P). We also consider the DBE with discontinuous coefficients and present novel SBP-SAT, SBP-P, and hybrid SBP-SAT-P discretizations for imposing interface conditions. To demonstrate the methodology for two-dimensional problems, we also present a discretization of the piecewise homogeneous dynamic Kirchoff-Love plate equation based on the hybrid SBP-SAT-P method. Numerical experiments show that all methods considered are similar in terms of accuracy, but that SBP-P can be more computationally efficient (less restrictive time step requirement for explicit time integration methods) for both the constant and piecewise constant coefficient problems

    Impact of physical fitness and biometric data on the quality of external chest compression: a randomised, crossover trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During circulatory arrest, effective external chest compression (ECC) is a key element for patient survival. In 2005, international emergency medical organisations changed their recommended compression-ventilation ratio (CVR) from 15:2 to 30:2 to acknowledge the vital importance of ECC. We hypothesised that physical fitness, biometric data and gender can influence the quality of ECC. Furthermore, we aimed to determine objective parameters of physical fitness that can reliably predict the quality of ECC.</p> <p>Methods</p> <p>The physical fitness of 30 male and 10 female healthcare professionals was assessed by cycling and rowing ergometry (focussing on lower and upper body, respectively). During ergometry, continuous breath-by-breath ergospirometric measurements and heart rate (HR) were recorded. All participants performed two nine-minute sequences of ECC on a manikin using CVRs of 30:2 and 15:2. We measured the compression and <it>de</it>compression depths, compression rates and assessed the participants' perception of exhaustion and comfort. The median body mass index (BMI; male 25.4 kg/m<sup>2 </sup>and female 20.4 kg/m<sup>2</sup>) was used as the threshold for subgroup analyses of participants with higher and lower BMI.</p> <p>Results</p> <p>HR during rowing ergometry at 75 watts (HR<sub>75</sub>) correlated best with the quality of ECC (<it>r </it>= -0.57, <it>p </it>< 0.05). Participants with a higher BMI and better physical fitness performed better and showed less fatigue during ECC. These results are valid for the entire cohort, as well as for the gender-based subgroups. The compressions of female participants were too shallow and more rapid (mean compression depth was 32 mm and rate was 117/min with a CVR of 30:2). For participants with a lower BMI and higher HR<sub>75</sub>, the compression depth decreased over time, beginning after four minutes for the 15:2 CVR and after three minutes for the 30:2 CVR. Although found to be more exhausting, a CVR of 30:2 was rated as being more comfortable.</p> <p>Conclusion</p> <p>The quality of the ECC and fatigue can both be predicted by BMI and physical fitness. An evaluation focussing on the upper body may be a more valid predictor of ECC quality than cycling based tests. Our data strongly support the recommendation to relieve ECC providers after two minutes.</p

    Business Data Services: Crucial Link and Market Power Choke Point in the Digital Communications Network

    No full text
    corecore